„KARDIO BALANS“

VAŽNA NAPOMENA: Poremećaj metabolizma šećera i masti (lipida) povećava rizik za nastanak bolesti koje ugrožavaju funkcije vitalnih organa i stoga zahteva OBAVEZAN pregled i praćenje od strane lekara!!!

DIABETES I GOJAZNOST KAO FAKTOR RIZIKA ZA NASTANAK  ATEROSKLEROZE

Najčešći poremećaj metabolizma lipoproteina u dijabetesu manifestuje se povišenjem nivoa triglicerida, sniženjem HDL-holesterola dok LDL-holesterol, kod dijabetičara, ne mora biti značajno povišen u poređenju sa nedijabetičarima. Međutim, navedene metaboličke promene najčešće dovode do povećanog rizika od ateroskleroze u dijabetičara.  Prema najnovijim istraživanjima dijabetes (oba tipa, tip 1 i tip 2) predstavlja ekvivalent koronarnoj bolesti zbog čega postoji težnja da vrednosti “loših” holesterola ne prelaze preporučene vrednosti.

Poželjne i rizične vrednosti za osnovne lipidne parametre prema  nacionalnom vodiču.

tabela

Kod dijabetesa tip 1 usled nedostatka insulina, smanjena je aktivnost lipoproteinske lipaze, zbog čega je smanjena eliminacija hilomikrona iz plazme, što kao posledicu ima povećanje triglicerida. Istovremeno, nema inhibicije hormon-senzitivne lipaze u masnom tkivu, pa je povećana razgradnja triglicerida iz masnog tkiva i mobilizacija masnih kiselina.  Regulisanjem dijabetesa tip 1 odgovarajućom insulinskom terapijom ovi procesi se mogu držati pod kontrolom.

Kod pacijenata sa dijabetesom tip 2 povećanje koncentracija holesterola i triglicerida  nastaje kao posledica povećanja njihove sinteze u jetri. Višak triglicerida se sekretuje u plazmu u obliku VLDL-a, a u slučaju da se prekorači kapacitet jetre za eliminaciju VLDL, tada se trigliceridi akumuliraju u jetri.

Dijetni faktori

Kontrolom unosa tipa i količine ugljenih hidrata kod pacijenata sa dijabetesom tip 2, snižava se koncentracija triglicerida i VLDL čestica. Uz kontrolu unosa ugljenih hidrata, jednako važan dijetni factor odnosi se i na pravilan izbor masti. Nivo ukupnog holesterola i LDL-a može da se reguliše smanjenim unosom holesterola i zasićenih masti.

Zbog aterogenih osobina VLDL-a i LDL-a povećava se rizik za nastajanje ateroskleroze. Ako pri tome dolazi i do smanjenja koncentracije HDL-a rizik za nastajanje ateroskleroze se povećava. Lipidni status kod dijabetičara zavisi i od drugih faktora kao što su: gojaznost, rezistencija na insulin, ishrana, fizička aktivnost, kao i genetska predispozicija. Povećane koncentracije glukoze u plazmi dovode do ne-enzimske glikozilacije proteina, a brzina ovog procesa proporcionalna je koncentraciji glukoze. Promene u strukturi i sastavu glikozilovanih proteina dovode do poremećaja njihove funkcije. Najčešće dolazi do glikozilacije kolagena, bazalne membrane krvnih sudova, što kao posledicu ima zadebljanje zidova krvnih sudova koje dovodi do smanjenja lumena i protoka. Posledice ne-enzimske glikozilacije proteina najpre su vidljive na malim krvnim sudovima oka i bubrega, pa dolazi do retinopatije i nefropatije. Povećanje LDL-a kod pacijenata sa dijabetesom može da bude i posledica glikozilacije apolipoproteina B ili proteina LDL receptora, čime je katabolizam LDL-a smanjen i otežan. Oštećenjem funkcije imunoglobulina IgG ne-enzimskom glikozilacijom proteina dolazi do učestalih infekcija i inflamacija koje pogoduju aterogenezi. Glikozilacija proteina je proporcionalna glikemiji, a glikozilovani hemoglobin HbA1c služi za procenu stepena glikoregulacije.

 

UTICAJ ODNOSA Ω3 I Ω6 MASNIH KISELINA NA NORMALIZACIJU LIPIDNOG STATUSA

 

Omega-3 masne kiseline ulaze u sastav ćelijske membrane, gde učestvuju u pravilnom funkcionisanju ćelijskih receptora. Takođe, one su polazna sirovina” za sintezu hormona koji regulišu zgrušavanje krvi, kontraktilnost i relaksaciju zidova arterija, kao i inflamatorne procese u ljudskom telu. Omega-3 masne kiseline učestvuju i u procesima genske ekspresije, te deluju preventivno kada su u pitanju kardiovaskularne bolesti i šlog, pomažu u kontroli lupusa, ekcema, reumatoidnog artritisa. Osim toga, neke studije su pokazale da omega-3 masne kiseline imaju protekivnu ulogu kada su u pitanju kancerogene bolesti.

Najvažnije omega-6 masne kiseline za organizam su linolna (LA), gama-linolenska (GLA) i dugolancana arahidonska kiselina (AA).  Rezultati velikog broja istraživanja ukazuju da bi omega-3/omega -6 masne kiseline mogle povoljno uticati na nivo lipida u krvi, krvni pritisak, da mogu imati imunomodulatorno i antiinflamatorno delovanje.Potrebe za ovim nutrientima su procenjivane od strane više nacionalnih i internacionalnih tela,  International Society for the Study of Fatty Acids and Lipids (ISFFAL) je 2004. godine preporučila da odrasle osobe unose 2% dnevne potrebne energije u vidu linolne kiseline kao jedine esencijalne omega-6 masne kiseline, dok bi za decu i 1% moglo biti dovoljno. Prema americkim podacima datim u Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids iz 2005. godine, odgovarajuci dnevni unos za linolnu kiselinu iznosi 17 g za muškarce i 12 g za žene (oko 5% dnevnog energetskog unosa). Kod unosa omega-6 masnih kiselina cesto se postavlja gornja granica poželjnog unosa i to na 10% dnevno potrebne energije. Razlozi su sledeci: uobicajenom ishranom baziranom na biljnim uljima uglavnom se unosi više od preporucenih kolicina; u vecim kolicinama omega-6 masne kiseline mogu delovati pro-oksidativno; vecim unosom narušava se odnos sa omega-3 masnim kiselinama.

Važnost uravnoteženog unosa omega 3 i omega 6 masnih kiselina

Nedostatak omega 3 masnih kiselina pozitivno korelira s pojavom više od 50 zdravstvenih poremećaja i bolesti uključujući tumore, bolest srca i krvotoka, dijabetes, moždani udar i artritis. Degenerativne bolesti «zapadnog» sveta rastu gotovo linearno s eliminacijom omega 3 uz povećan udeo omega 6 masnih kiselina u našoj ishrani.

Iako je glavnim krivcem za pojavu kardiovaskularnih bolesti proglašena zasićena masnoća, u praksi se utvrdilo da je preterani unos biljnih ulja (omega 6) takođe nosi rizike  po zdravlje.

Ako unosimo odgovarajuću vrstu masnoća u odgovarajućoj količini i ravnoteži, koristeći u pripremi odgovarajuće metode, oni postaju čuvari našeg zdravlja.

Gledajući u daleku istoriju uočavamo da su omega 3 i omega 6 masne kiseline u prehrani čoveka bile zastupljene u skoro podjednakoj proporciji. Omega 3 i 6 su dve od pedesetak poznatih esencijalnih nutrijenata, što znači da se ne mogu sintetisati u telu. Potrebe organizma se zadovoljavaju iz hrane, odnosno dodataka prehrani. Podjednak nivo obe vrste omega masnih kiselina je značajan jer one regulišu mnoštvometaboličkih funkcija preko prostaglandina i eikozanoida koje brojni autori nazivaju super-hormonima.  Takođe mnogi autori, kako evropski tako i američki,  usaglašeni su u stavu da mora postojati ravnoteža između „dobrih“ i „loših“ eikozanoida, kao i

između Ω3 i Ω6 masnih kiselina. Gotovo svaka biološka funkcija je na neki način povezana s pomenutom ravnotežom između Ω 3 i Ω 6 masnih kiselina. Omega 3 je u uskoj vezi s kontrolom upalnih procesa, zdravljem kardiovaskularnog sistema, nervnom regulacijom, alergijskim reakcijama, kontrolom imunog odgovora i uticaja hormona na metaboličke procese, kao i na kogniciju i raspoloženje.

Dijete koje su smanjivale udeo  omega 3 s jeftinijim izvorima omega 6 masnih kiselina uzrokovale su, na duge staze, hormonski disbalans i metaboličke poremećaje. Novo doba „low fat“ dijetnih režima promenilo je odnos Ω6 i Ω3 masnih kiselina, koji je kroz istoriju hiljadama godina pre industijalizacije bio blizak odnosu 3:1 do 1:1 na čak 15:1 do 20:1. Jasno je da ovako velika promena mora imati značajan uticaj na sve metaboličke procese a na nama je da pravilnim izborom namirnica ( prevashodno hladno ceđenih ulja) dođemo do pravilnog odnosa u našem režimu ishrane.

FITOFARMAKOLOŠKI ZNAČAJ KOPRIVE I JEČMENE TRAVE

Ekstrakti iz lista i semena koprive predstavljaju potencijalni prirodni izvor antioksidanasa. Od biljke se može koristiti koren, list, cvet i seme. List koprive sadrži širok spektar hemijskih konstitu-enata: acetilholin, histamin, 5-hidroksitriptamin (sero-tonin), hlorogenu i kafeinsku kiselinu, kumarine (sko-poletin), flavonoide, terpene, masne kiseline, minerale i vitamine .  Ekstrakti  koprive pokazuju hipotenzivnu, antiinflamatornu, diuretičnu, imunomodulatorsku  i antioksidativnu aktivnost. Antioksidanti su supstance koje neutralisanjem slobodnih radikala, doniranjem svog elektrona, sprečavaju oštećanja važnih ćelija i procesa u organizmu. Potvrđeno je da ekstrakti koprive inhibicijom lipidne peroksidacije i oksidacijom fenolnih jedinjenja ispoljavaju antioksidativnu aktivnost. Liofilizirani ekstrakti lista koprive ispoljavaju antialergijsku aktivnost, kontrolom Histamin 1 (H1) receptora koji regulišu oslobađanje histamina iz bazofila i drugih ćelija. Smatra se da su jedinjenja nikotinamid, adenin, sinefrin i ostol, a koja su identifikovana u koprivi, odgovorna za antiinflamatorne i antialergijske efekte. Ekstrakt lista koprive se može koristiti i kao pomoćni lek kod reumatoidnog artritisa.

KORISNE INFORMACIJE „NUTRITIVNI BALANS- U POTRAZI ZA IDEALNIM OBROKOM/MEĐUOBROKOM“ – klikni ovde

   Sok od zelenog ječma u prahu ima četri jedinstvene funkcije:

  •     vodeća je hrana po alkalnosti
  •     kompletna je hrana
  •     promoviše zaceljivanje rana

Sok od ječmene trave smanjuje holesterol, visok krvni pritisak, rizik od izohemičkog udara, povećava izdržljivost i energiju, blagotvorna je kod alergija, bolesti želudca i creva, bolesti bubrega i srca, oboljenja grla, usta i desni, ždrela i sinusa, organa za varenje i disanje, organizmu pruža zaštitu od štetnog dejstva radijacije.
Zahvaljujući retkom enzimu SOD ( superoksid dizmutaze) sok od ječma popravlja oštećene DNA ćelije, ima antiupalno i antibakterijsko dejstvo, neutralizuje pesticide i konzervanse u hrani, rečišćava vodu od fluora i drugih otrovnih supstanci, poboljšava kogniciju, otklanja kožne probleme, opstipaciju, sprečava formiranje žučnog kamena, promoviše razvoj korisnih bakterija u  crevima, deluje kao antioksidans.

 

 

 

 

Overview

Stinging nettle (Urtica dioica and the closely related Urtica urens) has a long medicinal history. In medieval Europe, it was used as a diuretic (to rid the body of excess water) and to treat joint pain.

Stinging nettle has fine hairs on the leaves and stems that contain irritating chemicals, which are released when the plant comes in contact with the skin. The hairs, or spines, of the stinging nettle are normally very painful to the touch. When they come into contact with a painful area of the body, however, they can actually decrease the original pain. Scientists think nettle does this by reducing levels of inflammatory chemicals in the body, and by interfering with the way the body transmits pain signals.

General Uses

Stinging nettle has been used for hundreds of years to treat painful muscles and joints, eczema, arthritis, gout, and anemia. Today, many people use it to treat urinary problems during the early stages of an enlarged prostate (called benign prostatic hyperplasia or BPH). It is also used for urinary tract infections, hay fever (allergic rhinitis), or in compresses or creams for treating joint pain, sprains and strains, tendonitis, and insect bites.

Benign Prostatic Hyperplasia (BPH)

Stinging nettle root is used widely in Europe to treat BPH. Studies in people suggest that stinging nettle, in combination with other herbs (especially saw palmetto), may be effective at relieving symptoms such as reduced urinary flow, incomplete emptying of the bladder, post urination dripping, and the constant urge to urinate. These symptoms are caused by the enlarged prostate gland pressing on the urethra (the tube that empties urine from the bladder). Some studies suggest that stinging nettle is comparable to finasteride (a medication commonly prescribed for BPH) in slowing the growth of certain prostate cells. However, unlike finasteride, the herb does not decrease prostate size. Scientists aren’t sure why nettle root reduces symptoms. It may be because it contains chemicals that affect hormones (including testosterone and estrogen), or because it acts directly on prostate cells. It is important to work with a doctor to treat BPH, and to make sure you have a proper diagnosis to rule out prostate cancer.

Osteoarthritis

The leaves and stems of nettle have been used historically to treat arthritis and relieve sore muscles. While studies have been small, they suggest that some people find relief from joint pain by applying nettle leaf topically to the painful area. Other studies show that taking an oral extract of stinging nettle, along with nonsteroidal anti-inflammatory drugs (NSAIDs), helps people reduce their NSAID dose.

Hay fever

One preliminary human study suggested that nettle capsules helped reduce sneezing and itching in people with hay fever. In another study, 57% of patients rated nettles as effective in relieving allergies, and 48% said that nettles were more effective than allergy medications they had used previously. Researchers think that may be due to nettle’s ability to reduce the amount of histamine the body produces in response to an allergen. More studies are needed to confirm nettle’s antihistamine properties. Some doctors recommend taking a freeze-dried preparation of stinging nettle well before hay fever season starts.

Other

Preliminary animal studies indicate that nettle may lower blood sugar and blood pressure. However, more research is needed to determine whether this is also true in humans.

 

Plant Description

Stinging nettle is the name given to common nettle, garden nettle, and hybrids of these plants. Originally from the colder regions of northern Europe and Asia, this herbaceous shrub grows all over the world today. Stinging nettle grows well in nitrogen-rich soil, blooms between June and September, and usually reaches 2 to 4 feet high.

Stems are upright and rigid. Leaves are heart shaped, finely toothed, and tapered at the ends, and flowers are yellow or pink. The entire plant is covered with tiny stiff hairs, mostly on the underside of the leaves and stem, that release stinging chemicals when touched.

What’s It Made Of?

Stinging nettle products are usually made from the leaves and stems, and sometimes the roots. Root preparations are used to relieve symptoms of BPH.

Available Forms

Stinging nettle is available as dried leaf, freeze-dried leaf, extract, capsules, tablets, and as root tincture (a solution of the herb in alcohol), juice, or tea. It also comes in the form of an ointment or cream that can be applied to the skin. The root appears to have different pharmacological effects than the leaves.

How to Take It

Pediatric

Although stinging nettle is available in many combination formulas to treat colds, asthma, and allergies in children, a specific safe and effective dose for children has not yet been established. Talk to your doctor before giving stinging nettle to a child, so the doctor can determine the proper dose.

Adult

Stinging nettle is used in many forms, including as teas, tinctures, fluid extracts, and creams.

Precautions

The use of herbs is a time-honored approach to strengthening the body and treating disease. However, herbs can trigger side effects, and can interact with other herbs, supplements, or medications. For these reasons, you should take herbs with care, under the supervision of a health care provider.

Stinging nettle is generally considered safe when used as directed. Occasional side effects include mild stomach upset, fluid retention, sweating, diarrhea, and hives or rash (mainly from topical use). It is important to be careful when handling the nettle plant because touching it can cause an allergic rash. Stinging nettle should never be applied to an open wound.

Because nettle can alter the menstrual cycle and may contribute to miscarriage, pregnant women should not use nettle.

DO NOT self treat with nettle for BPH. See your doctor to receive a diagnosis and to rule out prostate cancer.

There is some evidence that stinging nettle may raise blood sugar and interfere with diabetes management. There is also evidence that it can lower blood sugar. Patients with diabetes should monitor their blood sugar closely when using stinging nettle.

Stinging nettle can have a diuretic effect. If you have kidney or bladder issues, speak with your provider.

Possible Interactions

Antiplatelet and anticoagulant drugs (blood thinners)

Stinging nettle may affect the blood’s ability to clot, and could interfere with blood-thinning drugs, including:

  • Warfarin (Coumadin)
  • Clopidogrel (Plavix)
  • Aspirin

Drugs for high blood pressure

Stinging nettle may lower blood pressure, so it could strengthen the effects of these drugs:

  • ACE inhibitors: Captopril (Capoten), Elaropril (Vasotec), lisinopril (Zestril), fosinopril (Monopril)
  • Beta-blockers: Atenolol (Tenormin), metoprolol (Lopressor, Toprol XL), propranolol (Induran)
  • Calcium channel blockers: Nifedipine (Procardia), amlodipine (Norvasc), verapamil (Calan, Isoptin)

Diuretics (water pills)

Because stinging nettle can act as a diuretic, it can increase the effects of these drugs, raising the risk of dehydration:

  • Furosemide (Lasix)
  • Hydrocholorothiazide

Drugs for diabetes

Stinging nettle may lower blood sugar, so it could strengthen the effects of these drugs, raising the risk of hypoglycemia (low blood sugar).

Lithium

Stinging nettle may have a diuretic effect and may reduce the body’s ability to remove this drug.

Nonsteroidal anti-inflammatory drugs (NSAIDs)

In a scientific study of patients with acute arthritis, stewed stinging nettle leaves enhanced the anti-inflammatory effect of diclofenac, an NSAID. Although this effect can reduce pain, talk to your doctor before taking or using stinging nettle if you also take NSAIDs.

Supporting Research

Blumenthal M, Goldberg A, Brinckmann J. Herbal Medicine: Expanded Commission E Monographs. Newton, MA: Integrative Medicine Communications; 2000:367-375.

Bodemer AA. Urticaria. In: Rakel D, ed. Integrative Medicine. 3rd ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 70.

Bone K, Mill S, eds. Principles and Practices of Phytotherapy, Modern Herbal Medicine. London: Churchill Livingstone; 2000.

Chrubasik JE, Roufogalis BD, Wagner H, Chrubasik S. A comprehensive review on the stinging nettle effect and efficacy profiles. Part II: urticae radix. Phytomedicine. 2007;14:568-579.

Ernst E, Chrubasik S. Phyto – anti-inflammatories. A systematic review of randomized, placebo-controlled, double-blind trials. Rheum Dis Clin North Am. 2000;26:13-27.

Helms S, Miller A. Natural treatment of chronic rhinosinusitis. Altern Med Rev. 2006;11:196-207.

Johnson TA, Sohn J, Inman WD, Bjeldanes LF, Rayburn K. Lipophilic stinging nettle extracts possess potent antiinflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders. Phytomedicine. 2013; 20:143-147.

Koch E. Extracts from fruits of saw palmetto (Sabal serrulata) and roots of stinging nettle (Urtica dioica): viable alternatives in the medical treatment of benign prostatic hyperplasia and associated lower urinary tract symptoms. Planta Med. 2001;67:489-500.

Konrad L, Muller HH, Lenz C, Laubinger H, Aumuller G, Lichius JJ. Antiproliferative effect on human prostate cancer cells by a stinging nettle root (Urtica dioica) extract. Planta Med. 2000;66:44-47.

Lopatkin NA, Sivkov AV, Medvedev AA, et al. Combined extract of Sabal palm and nettle in the treatment of patients with lower urinary tract symptoms in double blind, placebo-controlled trial. Urologiia. 2006;(2):12, 14-91.

Nahata A. Ameliorative effects of stinging nettle (Urtica dioica) on testosterone-induced prostatic hyperplasia in rats. Andrologia. 2012; 44:396-409.

Pittler MH. Complementary therapies for treating benign prostatic hyperplasia. FACT. 2000;5:255-257.

Popa G, Hagele-Kaddour H, Walther C. Efficacy of a combined Sabal-urtica preparation in the symptomatic treatment of benign prostatic hyperplasia. Results of a placebo-controlled double-blind study. MMW Fortschr Med. 2005;147 Suppl 3:103-108.

Randall C, Randall H, Dobbs F, Hutton C, Sanders H. Randomized controlled trial of nettle sting for treatment of base-of-thumb pain. J R Soc Med. 2000;93:305-309.

Safarinejad MR. Urtica dioica for treatment of benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo-controlled, crossover study. J Herb Pharmacother. 2005;5:1-11.

Schneider T, Rubben H. Stinging nettle root extract (Bazoton-uno) in long term treatment of benign prostatic syndrome (BPS). Results of a randomized, double-blind, placebo controlled multicenter study after 12 months. Urologe A. 2004;43:302-306.

Schulze-Tanzil G, de SP, Behnke B, Klingelhoefer S, Scheid A, Shakibaei M. Effects of the antirheumatic remedy hox alpha – a new stinging nettle leaf extract – on matrix metalloproteinases in human chondrocytes in vitro. Histol Histopathol. 2002;17:477-485.

Tarhan O, Alacacioglu A, Somali I, Sipahi H, Zencir M, Oztop I, Dirioz M, Yilmaz U. Complementary-alternative medicine among cancer patients in the western region of Turkey. J BUON. 2009;14:265-269.

Wilt TJ, Ishani A, Rutks I, MacDonald R. Phytotherapy for benign prostatic hyperplasia. Public Health Nutr. 2000;3:459-472.

The Efficacy of Stinging Nettle (Urtica Dioica) in Patients with Benign Prostatic Hyperplasia: A Randomized Double-Blind Study in 100 Patients

Benign Prostatic Hyperplasia (BPH) is a common disease observed in 90 percent of men over 60 (1). Benign prostatic hyperplasia is the most common benign tumor in men (2). The exact cause of this disease is still unknown, and environmental and genetic causes are thought to be involved in its development (3). As studies show, 50 percent of men between the ages of 51 to 60 and 90 percent of men over 80 have been histologically diagnosed with BPH (4). One of the most commonly used herbal remedies is nettle, which causes anti-inflammatory, anti-tumor, antiviral effects, modulating of immune system, and relieves the symptoms of benign prostatic hyperplasia due to the compounds it contains such as phytosterols, lignans and polysaccharides (5). In a clinical trial, 287 BPH patients who had been treated with nettle (Urtica dioica) showed significant reduction in IPSS, serum PSA and prostate size (6). Researchers decided to carry out a new research aiming to investigate the efficacy of nettle on the reduction of clinical symptoms of BPH. The present study is randomized double-blind clinical trial which has been performed to investigate the effect of nettle herb in reducing symptoms of benign prostatic hyperplasia in the patients referred to the Urology Department of Imam Khomeini and Golestan Hospitals in Ahvaz, during the period of May 1 to August 1, 2011. One-hundred BPH patients were bound to having certain criteria to be included in the study; for example, they had to be between 40 to 80 years with no specific complications such as acute urinary retention, renal infection or renal failure. They were also asked to sign the consent form. They were divided randomly and double-blind into two groups of fifty. After the patients were examined by urologists and their cases of BPH were approved, they were included in the study. One group was given nettle and other group placebo (two capsules of 300mg each, 2 times a day) similarly and consistently for a period of 8 weeks. Placebo and nettle were provided in identical capsules by Goldaru Company. A checklist containing demographic information and International Prostate Symptom Score (IPSS) or AUA was used to collect data. Nine visits were made (for each patient) before entering the study and at the end of each week until the eighth week of treatment, and at the end of treatment period, the data from before, during and after the treatment were collected through the checklist. Statistical analyses were performed using the SPSS Statistical Package (Version 17.0, Chicago, IL, USA). The results are shown as mean ± standard deviation (SD). Then, general linear model repeated measures test was used to assess the difference after using drugs. A p value less than 0.05 were considered significant. The patients were also asked to inform the researchers if it they felt or noticed side effects of any sort. Provisions of the Declaration of Helsinki were observed during the procedures of the research. After an 8-week treatment, all patients completed the study. The patients’ average age was 62.4 ± 1.2. 71.2 percent had no family history, and 27.2 percent were smokers. After two months, patients were assessed in terms of clinical symptoms of BPH using AUA Score. No significant relationship was observed between demographic information and BPH symptoms in either of the groups. The results from comparison of averages of AUA scale showed that significant difference in case group (the group on nettle) before and after using the medicine, but no statistically significant difference was observed in control group (the group on placebo). The average score of AUA scale in the group taking nettle was assessed 26.511 ± 0.264 and 2.118 ± 0.431 (P = 0.000) before and after respectively, which was statistically significant, but the average score of AUA scale in the group taking placebo was determined 27.854 ± 0.744 and 27.853 ± 0.766 respectively (P = 1.000) which was not statistically significant (Table 1). At the beginning of the study, there was no statistically significant difference between the average score of AUA scale in both groups (P = 0.764). No side effects were reported by the patients in the end of the study. According to the results, nettle had a better effect in relieving clinical symptoms in BPH patients compared to placebo. Herbal medicines such as nettle have been used in many studies to treat prostate disease, and desirable results have been achieved in this regard. In three clinical trials on BPH patients, nettle had a better impact in reducing patients’ clinical symptoms than placebo (68). As a whole, nettle is recommended to be used more in treatment of BPH patients, given its beneficial effects in reducing BPH patients’ symptoms and its safety in terms of its side effects and its being better accepted on the side of patients. This study was supported by a grant from Azad University of Gachsaran, Iran. We are also grateful to the staff of the teaching and research center of Islamic Azad University, Gachsaran, Iran for their help in the course of this study.

Table 1

Comparison of Severity of Patient’s Symptoms in Two Groups of Patients Receiving Stinging Nettle or Placebo during the Course of Disease
Date Stinging Nettle, Mean ± SD Placebo, Mean ± SD PValue
Before treatment 26/511 ± 0/264 27/854 ± 0/744 0/764
First week 23/554 ± 0/354 27/854 ± 0/744 0/000
Second Week 20/454 ± 0/854 27/855 ± 0/745 0/000
Third week 17/654 ± 0/694 27/856 ± 0/743 0/000
Forth week 14/754 ± 0/974 27/854 ± 0/744 0/000
Fifth week 11/954 ± 0/574 27/852 ± 0/741 0/000
Sixth week 7/254 ± 0/864 27/858 ± 0/742 0/000
Seventh week 4/054 ± 0/234 27/855 ± 0/745 0/000
Eight week 2/118 ± 0/431 27/853 ± 0/766 0/000

Footnotes

Please cite this paper as: Ghorbanibirgani A, Khalili A, Zamani L. The Efficacy of Stinging Nettle (Urtica Dioica) in Patients with Benign Prostatic Hyperplasia: A Randomized Double-Blind Study in 100 Patients. Iran Red Cres Med J. 2013;15(1):9-10. DOI:10.5812/ircmj.2386

 Macfarlane MT. Urology. Philadelphia: Lippincott Williams and Wilkins; 2006.
2. Patrick CE, Walsh MR, Alan JE, Retick JR. Campbell’s urology. Philadelphia: Saunders; 2006.
3. Kantoff PW, Carrol PR. Prostate Cancer principles and practice. Philadelphia: Lippincott Williams and Wilkins; 2002.
4. Tanagho ER, Mcaninch JE. Smith’s general urology. New York: McGraw-Hill; 2008.
5. Mills S, Bone K. Principles and practice of phytotherapy. London: Churchill Livingstone; 2000.
6. Safarinejad MR. Urtica dioica for treatment of benign prostatic hyperplasia: a prospective, randomized, double-blind, placebo-controlled, crossover study. J Herb Pharmacother. 2005;5(4):1–11. doi: 10.1080/J157v05n04_01. [PubMed] [Cross Ref]
7. Melo EA, Bertero EB, Rios LA, Mattos D, Jr. Evaluating the efficiency of a combination of Pygeum africanum and stinging nettle (Urtica dioica) extracts in treating benign prostatic hyperplasia (BPH): double-blind, randomized, placebo controlled trial. Int Braz J Urol. 2002;28(5):418–25. [PubMed]
8. Schneider T, Rubben H. [Stinging nettle root extract (Bazoton-uno) in long term treatment of benign prostatic syndrome (BPS). Results of a randomized, double-blind, placebo controlled multicenter study after 12 months]. Urologe A. 2004;43(3):302–6. doi: 10.1007/s00120-004-0532-7. [PubMed] [Cross Ref]

Barley grass extract causes apoptosis of cancer cells by increasing intracellular reactive oxygen species production

Abstract

Cancer remains a leading cause of mortality worldwide, therefore food products are being investigated for potential prevention or treatment strategies. The ingredient, barley grass extract (Hordeum vulgare L.; Bex) is used to prevent or ameliorate various types of disease. In cancer, Bex has been revealed to inhibit tumor growth. However, its effect on cancer cells is yet to be clearly defined. In the present study, the effect of Bex on cancer cell growth was investigated. Bex inhibited the viabilities of breast and prostate cancer cells according to the results of MTT assays. Accordingly, Bex caused apoptosis, which was confirmed by Annexin V staining and western blot analysis for poly (ADP-ribose) polymerase and caspases. Furthermore, Bex increased the intracellular levels of reactive oxygen species (ROS), and N-acetyl-L-cystein blocked Bex-induced apoptosis. Therefore, the study demonstrated that Bex causes apoptosis of breast and prostate cancer cells by increasing intracellular ROS levels.

Keywords: barley grass extract, cancer, reactive oxygen species

Introduction

Cancer is one of the leading causes of mortality worldwide (1,2). Despite numerous cancer studies and the development of various anti-cancer therapeutic agents, cancer remains dangerous. Anti-cancer therapeutic agents are chemically or biologically produced, and their effects are well defined (37). However, treatments continue to be associated with adverse effects and the majority of patients have an aversion to them (8).

Herbal products have long been used to prevent or treat diseases, including cancer (912). Furthermore, certain anti-cancer therapeutic agents that are chemically produced originate from herbal products and their chemical characteristics are modified (7,1214). Typically, patients prefer to take herbal products (1518); herbal products have historically been used as traditional medicines, such as traditional Chinese and Korean medicines, Kampo medicines and Ayurvedic medicine (13,14,19). Certain herbal products were demonstrated to treat cancer and/or reduce the side effects of cancer treatment (13,1517,1921). Therefore, herbal products are considered to be promising for cancer prevention and treatment.

Barley grass extract (Hordeum vulgare L.; Bex) has long been used as a food product. Its biological effects have also been addressed by various in vitro and in vivo studies, although evidence there is limited evidence of the efficacy of Bex against specific conditions (22). The effect of Bex on the immune system was revealed in in vitro and in vivo experimental sets (2325). Accordingly, Bex inhibited atopic dermatitis in NC/Nga mice by altering the expression levels of cytokines (26). Similarly, Bex repressed lipopolysaccharide-induced inflammation (27). Furthermore, its effect in type 2 diabetes was revealed in a genetically engineered mouse model and patients (28,29). Therefore, the effects of Bex on particular diseases have been demonstrated at least in experimental systems. A previous study revealed that Bex caused apoptosis of leukemia and lymphoma cell lines (30); however, its effect in cancer remains unclear.

The present study examined the effect of Bex in different cancer cell lines, including breast cancer MDA-MB-231 cells and prostate cancer DU145 cells. Bex induced apoptotic cell death in MDA-MB-231 and DU145 cells. Furthermore, its effect resulted from an increased intracellular reactive oxygen species (ROS) level. Thus, the current study suggests that Bex may be useful for treating cancer, particularly breast and prostate cancer.

Materials and methods

Cell culture and herbal extract

MDA-MB-231 and DU-145 cells (American Type Culture Collection, Manassas, VA, USA) were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum and 1% penicillin-streptomycin (all Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA). Barley grass extract (Bex) was obtained from Chungbuk Agricultural Cooperation (Jecheon, South Korea). Bex was solubilized in water containing 0.01% dimethyl sulfoxide (DMSO). Therefore, all control groups in the experiment were treated with 0.01% DMSO.

Cell viability assay

Cell viability was examined using an EZ-CYTOX cell viability/cytotoxicity assay kit (cat. no. EZ-000, Daeil Lab Service, Seoul, South Korea) according to the manufacturer’s instructions. Briefly, 100,000 cells per well were cultured in 96-well plates and treated with different doses (0, 0.01, 0.1, 1, 10, 100, 250 and 500 µg/ml) of Bex for 72 h. Cell viability at 24, 48 and 72 h was measured using a microplate reader at a wavelength of 450 nm. Experiments were performed in triplicate and repeated three times independently.

Apoptosis assay

Cells (3×106) were treated with different concentrations (0, 0.01, 0.1, 1, 10, 100, 250 and 500 µg/ml) of Bex for 24 h and stained with Annexin V-fluorescein isothiocyanate (FITC) and 7-aminoactinomycin D (7-AAD). Apoptotic cell death was determined using BD FACSCalibur flow cytometry with BD MultiSET software (BD Biosciences, San Jose, CA, USA). For western blot analysis, 1×106 cells were treated with 100 µg/ml Bex for 24 h and lysed with RIPA buffer. Protein (30 µg) was loaded onto SDS-PAGE and transferred to the membrane. After blocking with 5% milk, the membrane was incubated with an appropriate primary antibody for 1 h at room temperature. Anti-poly(ADP-ribose) polymerases (PARP) (cat. no. 9542), anti-cleaved caspase 8 (cat. no. 9496), anti-cleaved caspase 9 (cat. no. 7237), anti-cleaved caspase-3 (cat. no. 9664) and anti-β-tubulin (cat. no. 2146) antibodies were obtained from Cell Signaling Technology, Inc. (Danvers, MA, USA).

Intracellular ROS detection assay

ROS levels were measured using 10 µM 2′,7′-dichlorofluorescin diacetate (H2DCF-DA; Molecular Probes; Thermo Fisher Scientific, Inc., Waltham, MA, USA). Cells (1×106) were treated with 100 µg/ml Bex for 5 min and treated with H2DCF-DA for a further 24 h. The flow cytometry experiments were conducted in triplicate and repeated three times independently. Sigma-Aldrich N-acetyl-L-cystein (NAC; Merck KGaA, Darmstadt, Germany) at 10 mM was used to inhibit ROS induction. Cells (1×106) were pretreated with 10 mM NAC for 1 h before being treated with 100 µg/ml Bex for 24 h.

Statistical analysis

All experiments were performed in triplicate and repeated three times independently. Statistical significance was evaluated using Student’s t-test and analysis was conducted using SPSS version 24.0 software (IBM Corp., Armonk, NY, USA). P<0.05 was considered to indicate a statistically significant difference.

Results

Bex inhibits cancer cell viability

To examine the effect of Bex on cancer cell viability, MDA-MB-231 breast cancer cells and DU-145 prostate cancer cells were treated with different concentrations (0, 0.01, 0.1, 1, 10, 100, 250 and 500 µg/ml) of Bex for 24, 48 and 72 h. Bex reduced the viability of those cancer cells in a dose-dependent manner (Fig. 1). Thus, the MTT assay data indicates that Bex inhibits cancer cell viability.

Bex causes apoptosis of cancer cells

Annexin V assays were performed to examine whether Bex induces apoptosis of cancer cells. MDA-MB-231 or DU-145 cells were treated with 100 µg/ml Bex for 24 h, followed by Annexin V-FITC and 7-AAD. Flow cytometry data indicated that Bex induced apoptosis of the two types of cancer cell (Fig. 2A). Consistently, Bex induced PARP cleavage and caspase activation in the MDA-MB-231 cells (Fig. 2B; data for DU-145 not shown). Thus, the current data indicates that Bex causes apoptosis of cancer cells.

 

 

 

 

 

 

 

 

 

 

 

Discussion

Bex has long been incorporated into diets for disease prevention. However, to the best of our knowledge, its effects in cancer are yet to be investigated. In the present study, Bex caused apoptosis of breast and prostate cancer cells by increasing the intracellular ROS level. The present data indicate that cancer could be, in part, treated using natural products in food. Bex is widely used in food. Therefore, the present study demonstrates that foods containing Bex may be useful for cancer treatment during therapeutic interventions.

A recent study demonstrated that Bex induced apoptosis of leukemia and lymphoma cell lines (30). While not shown in the present study, the data demonstrated no apoptotic effect of Bex in Jurkat T cells (data not shown). It is possible that the experimental conditions, such as the extraction method and concentration, may have influenced the controversial results. In the present study, Bex induced apoptotic cell death of highly metastatic MDA-MB-231 breast cancer cells and DU-145 prostate cancer cells. Thus, the anti-cancer effect of Bex is not limited to blood cancer. This is consistent with results obtained using Bex-treated B16 melanoma cells or HepG2 hepatoma cells (31,32). Bex is one of the ingredients in cereal and the anti-cancer effect of peptides from cereal has previously been demonstrated (33). Furthermore, meta-analyses indicated that cereal reduces cancer risk (34,35). Thus, the present study provides evidence that dietary components are beneficial for cancer prevention and treatment.

In conclusion, Bex induction of ROS was crucial for apoptotic cell death. While the chemical components to produce ROS and induce apoptotic cell death in those breast and prostate cancer cells require further investigation, this is the first study, to the best of our knowledge, that shows the role of Bex in cancer cell death.

Acknowledgements

The present study was supported by the Korean National University of Transportation 2016.

References

1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012;13:607–615. doi: 10.1016/S1470-2045(12)70137-7. [PubMed] [Cross Ref]
2. McGuire S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr. 2016;7:418–419. doi: 10.3945/an.116.012211. [PMC free article] [PubMed] [Cross Ref]
3. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv Drug Deliv Rev. 2017;1:25–38. doi: 10.1016/j.addr.2016.04.025. [PubMed] [Cross Ref]
4. Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J Control Release. 2014;187:133–144. doi: 10.1016/j.jconrel.2014.05.036. [PMC free article] [PubMed] [Cross Ref]
5. Bellou S, Pentheroudakis G, Murphy C, Fotsis T. Anti-angiogenesis in cancer therapy: Hercules and hydra. Cancer Lett. 2013;338:219–228. doi: 10.1016/j.canlet.2013.05.015. [PubMed] [Cross Ref]
6. Ali I, Wani WA, Saleem K, Haque A. Platinum compounds: A hope for future cancer chemotherapy. Anticancer Agents Med Chem. 2013;13:296–306. doi: 10.2174/1871520611313020016. [PubMed][Cross Ref]
7. Fauzee NJ. Taxanes: Promising anti-cancer drugs. Asian Pac J Cancer Prev. 2011;12:837–851.[PubMed]
8. Vera-Badillo FE, Al-Mubarak M, Templeton AJ, Amir E. Benefit and harms of new anti-cancer drugs. Curr Oncol Rep. 2013;15:270–275. doi: 10.1007/s11912-013-0303-y. [PubMed] [Cross Ref]
9. Ghorbani A. Clinical and experimental studies on polyherbal formulations for diabetes: Current status and future prospective. J Integr Med. 2014;12:336–345. doi: 10.1016/S2095-4964(14)60031-5. [PubMed][Cross Ref]
10. Jiang M, Yang J, Zhang C, Liu B, Chan K, Cao H, Lu A. Clinical studies with traditional Chinese medicine in the past decade and future research and development. Planta Med. 2010;76:2048–2064. doi: 10.1055/s-0030-1250456. [PubMed] [Cross Ref]
11. Ilyas U, Katare DP, Aeri V, Naseef PP. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn Rev. 2016;10:66–70. doi: 10.4103/0973-7847.176544. [PMC free article] [PubMed][Cross Ref]
12. Bahmani M, Shirzad H, Shahinfard N, Sheivandi L, Rafieian-Kopaei M. Cancer phytotherapy: Recent views on the role of antioxidant and angiogenesis activities. J Evid Based Complementary Altern Med. 2016 2156587215625157. [PubMed]
13. Xu H, Zhao X, Liu X, Xu P, Zhang K, Lin X. Antitumor effects of traditional Chinese medicine targeting the cellular apoptotic pathway. Drug Des Devel Ther. 2015;9:2735–2744. [PMC free article][PubMed]
14. Ichikawa H, Nakamura Y, Kashiwada Y, Aggarwal BB. Anticancer drugs designed by mother nature: Ancient drugs but modern targets. Curr Pharm Des. 2007;13:3400–3416. doi: 10.2174/138161207782360492. [PubMed] [Cross Ref]
15. Poonthananiwatkul B, Howard RL, Williamson EM, Lim RH. Cancer patients taking herbal medicines: A review of clinical purposes, associated factors, and perceptions of benefit or harm. J Ethnopharmacol. 2015;175:58–66. doi: 10.1016/j.jep.2015.08.052. [PubMed] [Cross Ref]
16. Lee JW, Lee WB, Kim W, Min BI, Lee H, Cho SH. Traditional herbal medicine for cancer pain: A systematic review and meta-analysis. Complement Ther Med. 2015;23:265–274. doi: 10.1016/j.ctim.2015.02.003. [PubMed] [Cross Ref]
17. Leggett S, Koczwara B, Miller M. The impact of complementary and alternative medicines on cancer symptoms, treatment side effects, quality of life, and survival in women with breast cancer – a systematic review. Nutr Cancer. 2015;67:373–391. doi: 10.1080/01635581.2015.1004731. [PubMed] [Cross Ref]
18. Bao Y, Kong X, Yang L, Liu R, Shi Z, Li W, Hua B, Hou W. Complementary and alternative medicine for cancer pain: An overview of systematic reviews. https://doi.org/10.1155/2014/170396eCAM. 2014:170396. [PMC free article] [PubMed]
19. Wang CY, Bai XY, Wang CH. Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development. Am J Chin Med. 2014;42:543–559. doi: 10.1142/S0192415X14500359.[PubMed] [Cross Ref]
20. Ohnishi S, Takeda H. Herbal medicines for the treatment of cancer chemotherapy-induced side effects. Front Pharmacol. 2015;6:14. doi: 10.3389/fphar.2015.00014. [PMC free article] [PubMed] [Cross Ref]
21. Park B, Jun JH, Jung J, You S, Lee MS. Herbal medicines for cancer cachexia: Protocol for a systematic review. BMJ Open. 2014;4:e005016. doi: 10.1136/bmjopen-2014-005016. [PMC free article][PubMed] [Cross Ref]
22. Lahouar L, El-Bok S, Achour L. Therapeutic potential of young green barley leaves in prevention and treatment of chronic diseases: An overview. Am J Chin Med. 2015;43:1311–1329. doi: 10.1142/S0192415X15500743. [PubMed] [Cross Ref]
23. Miyazaki Y, Tokunaga Y, Takagaki K, Tsusaki S, Tachibana H, Yamada K. Effect of dietary cabbage fermentation extract and young barley leaf powder on immune function of Sprague-Dawley rats. J Nutr Sci Vitaminol (Tokyo) 2001;47:253–257. doi: 10.3177/jnsv.47.253. [PubMed] [Cross Ref]
24. Cremer L, Herold A, Avram D, Szegli G. Inhibitory capacity of some fractions isolated from a green barley extract upon TNF alpha production by the cells of the THP-1 human monocytes line. Roum Arch Microbiol Immunol. 1996;55:285–294. [PubMed]
25. Cremer L, Herold A, Avram D, Szegli G. A purified green barley extract with modulatory properties upon TNF alpha and ROS released by human specialised cells isolated from RA patients. Roum Arch Microbiol Immunol. 1998;57:231–242. [PubMed]
26. Iguchi T, Kawata A, Watanabe T, Mazumder TK, Tanabe S. Fermented barley extract suppresses the development of atopic dermatitis-like skin lesions in NC/Nga mice, probably by inhibiting inflammatory cytokines. Biosci Biotechnol Biochem. 2009;73:489–493. doi: 10.1271/bbb.80436. [PubMed] [Cross Ref]
27. Choi KC, Hwang JM, Bang SJ, Son YO, Kim BT, Kim DH, Lee SA, Chae M, Kim DH, Lee JC. Methanol extract of the aerial parts of barley (Hordeum vulgare) suppresses lipopolysaccharide-induced inflammatory responses in vitro and in vivo. Pharm Biol. 2013;51:1066–1076. doi: 10.3109/13880209.2013.768274. [PubMed] [Cross Ref]
28. Hong H, Jai Maeng W. Effects of malted barley extract and banaba extract on blood glucose levels in genetically diabetic mice. J Med Food. 2004;7:487–490. doi: 10.1089/jmf.2004.7.487. [PubMed][Cross Ref]
29. Yu YM, Chang WC, Chang CT, Hsieh CL, Tsai CE. Effects of young barley leaf extract and antioxidative vitamins on LDL oxidation and free radical scavenging activities in type 2 diabetes. Diabetes Metab. 2002;28:107–114. [PubMed]
30. Robles-Escajeda E, Lerma D, Nyakeriga AM, Ross JA, Kirken RA, Aguilera RJ, Varela-Ramirez A. Searching in mother nature for anti-cancer activity: Anti-proliferative and pro-apoptotic effect elicited by green barley on leukemia/lymphoma cells. PLoS One. 2013;8:e73508. doi: 10.1371/journal.pone.0073508.[PMC free article] [PubMed] [Cross Ref]
31. Ghavami L, Goliaei B, Taghizadeh B, Nikoofar A. Effects of barley β-glucan on radiation damage in the human hepatoma cell line HepG2. Mutat Res Genet Toxicol Environ Mutagen. 2014;775:1–6. doi: 10.1016/j.mrgentox.2014.09.005. [PubMed] [Cross Ref]
32. Meng TX, Irino N, Kondo R. Melanin biosynthesis inhibitory activity of a compound isolated from young green barley (Hordeum vulgare L.) in B16 melanoma cells. J Nat Med. 2015;69:427–431. doi: 10.1007/s11418-015-0902-z. [PubMed] [Cross Ref]
33. Ortiz-Martinez M, Winkler R, García-Lara S. Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics. 2014;111:165–183. doi: 10.1016/j.jprot.2014.03.044. [PubMed][Cross Ref]
34. Lei Q, Zheng H, Bi J, Wang X, Jiang T, Gao X, Tian F, Xu M, Wu C, Zhang L, et al. Whole grain intake reduces pancreatic cancer risk: A meta-analysis of observational studies. Medicine (Baltimore) 2016;95:e2747. doi: 10.1097/MD.0000000000002747. [PMC free article] [PubMed] [Cross Ref]
35. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, Tonstad S, Vatten LJ, Riboli E, Norat T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. doi: 10.1136/bmj.i2716. [PMC free article] [PubMed] [Cross Ref]

 

 

 

 

Advertisements